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Astronauts have to complete hundreds of hours of training with simulation systems 

that help them to improve their ability to operate robotic arms for docking operations. 

In docking tasks, performed for example on the CanadaArm2, the operator does not 

have direct view of the international space station but relies instead on visual feedback 

from multiple 2D camera views. Failure to accomplish the tasks on time costs millions 

of pounds and can potentially endanger the life of the crew members. Even in simulated 

tasks of the Soyuz-TMA approach and docking, tension and anxiety build up quickly 

as the precision required is high and virtual fuels are limited. In this chapter, we 

investigate how simulation systems can be used as a platform to enhance and measure 

an operator’s performance, as well as to design and evaluate semi-autonomous modes 

of operation that facilitate effective human robot collaboration. Furthermore, we 

review how brain computer interfaces can monitor workload, attention and fatigue. 

These systems can be evolved to provide an intuitive human robot interaction 

experience that provides guidance and feedback as they are needed. 

 

1.1 Human Robot Interaction in Space – What we learn from 

simulators 

Astronauts spend hundreds of hours of training on simulators in order to acquire 

the necessary skills and abilities to follow procedures that are vital to their survival 

in space. Furthermore, they need to acquire expert knowledge to maintain and 

interact with complex electronic and robotic systems. In order for astronauts to retain 

the skills they learned from the simulator and to generalize or transfer to the 

operational domain, the training simulators used must be high fidelity [5]. This 

reflects the fact that crew needs to train to handle low likelihood events that are time 

critical. Several simulators mimic the extreme conditions of outer space, such as a 

lack of gravity, oxygen and pressure, as well as very low temperatures. Examples of 

specialized simulation facilities include the thermal vacuum chamber at the NASA 
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Goddard Space Flight Center and the Large Space Simulator at the European Space 

Agency.  These systems are designed to physically and mentally prepare the crew as 

well as to examine material properties and tolerance in extreme conditions. On the 

other hand, several other types of simulators have been developed to train astronauts 

to use complex technology to perform surveillance, maintenance and assembly tasks, 

as well as how to dock modules, teleoperate robots and fly a spacecraft  [1, 6]. 

Inherently, simulation systems provide a testbed in several aspects, which includes 

system testing and verification, ergonomics in human machine collaboration and 

neuroergonomics in closed-loop interactive interfaces.    

System testing and verification are of paramount importance in both fully 

automated and semi-automated systems. Real-time, complex distributed systems that 

combine both hardware/sensing components along with software components are 

notoriously difficult to design and test. Engineers rely on simulation systems to 

provide realistic test cases of rare and dangerous scenarios that aim to highlight 

shortcomings and failures. Among the most well-known space flight simulators are 

the STS-133 simulator and the vertical motion simulator at Ames Research Centre 

[6].  

The aviation industry is a representative example of the challenges to address. 

Although the industry complies to the highest standards and there is accumulated 

experience of several decades, catastrophic failures continue to highlight the 

downside of complex automated systems. In March 2019, Boeing 737 Max 8 and 9 

jets were grounded following two deadly accidents. Apparently erroneous sensor 

readings triggered an automated system response, which could not be controlled by 

the crew [7]. From one perspective, automation has helped to improve safety, but the 

difficulty to comprehend the complexity of the systems along with an inherent lack 

of transparency of current machine learning algorithms hinders a widespread 

adoption of fully automated systems [8]. 

To this end, human machine interaction via intuitive designs [9] could empower 

humans and create augmented artificial intelligence frameworks that encompass 

expert knowledge along with data science. Simulators in these scenarios are 

important to perform the so called human-in-the-loop tests [10]. In particular, 

docking modules on the ISS are of particular significance because they require a 

good spatial understanding of the environment, even when presented with limited 

information.  

Although human error is estimated to cause over 60% of fatal accidents in 

aviation, well trained crew is acknowledged to be critical to the overall system’s 

safety [10]. There is extensive research in ergonomics to design human centered 

systems, and towards this end appropriate simulation environments are of paramount 

importance. Towards this end, cognitive workload data obtained in simulations 

provide valuable insight on how to design efficient interactive frameworks that 

minimize fatigue and improve performance.  

In this chapter, we examine how realistic simulation environments used typically 

in teleoperated robots in ISS and docking tasks can facilitate the development of 

testbeds for augmented human and AI systems that sense human neurophysiology 
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and allow them to react in real-time via intuitive designs, such as displays, haptic 

and auditory feedback.  

 

  

1.1.1 Soyuz-TMA 

The Soyuz-TMA is a spacecraft used by the Russian Federal Space Agency to 

launch missions from Earth to space. Currently, it is used to carry astronauts from 

and to International Space Station (ISS) and it is considered to be one of the safest 

and most cost-effective spacecrafts in operation. Astronauts are trained to operate 

the Soyuz-TMA in a number of modes, which include prelaunch preparation, 

insertion to the orbit, orbital maneuvering, approaching and docking at ISS, 

undocking, reentry to the atmosphere from orbit and landing. The onboard control 

system is based on a camera and a periscope view, whereas a KURS AM radio 

system provides information with regard to the relative velocity, attitude and distance 

of the spacecraft to the docking station. Some of the key data displayed along with 

the camera and periscope views include approach distance and velocity, rates of 

rotation for attitude stabilization and line of sight angle for alignment. During 

docking, it is important to maintain rotational and translational velocity within safe 

limits and the docking target should also be closely aligned with the spacecraft 

centerline. The Soyuz-TMA can operate either in automatic mode or can be switched 

to manual mode when the automatic system fails to dock. In this case, the spacecraft 

has to abort its approach, move backwards and try again. Due to the lack of gravity 

once a thruster exerts a translational or rotational force on the spacecraft, the 

spacecraft will continue moving or rotating unless the force is counterbalanced. 

Therefore, successfully docking the module to the ISS requires calculated 

movements and precision to approach the docking station without excessive forces 

and to avoid running out of fuel.   

Figure 1 shows a simulator for the Soyuz-TMA approach and docking. The 

docking has two levels of difficulty: i) docking the spacecraft in the ISS hatch 

directly in front it, which does not require rotational maneuvering and ii) docking the 

spacecraft in one of the left/right/bottom ISS hatches, which involves activating first 

the translational and rotational thruster. Rotating the spacecraft is more challenging 

since excessive forces could result in spinning around in a difficult to control way. 

Another challenge related to the camera and periscope views is that the motion is a 

mirrored translation of the camera’s view; you move left whereas the docking target 

in the periscopic view is moving right, creating a perceptual conflict which can 

confuse the user if he is not adequately trained. Furthermore, there is no intelligent 

guidance to help the user understand what values could be the optimal for navigating. 
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For example, intuitive information regarding the 3D position and orientation of the 

Soyuz-TMA along with optimum navigation paths could allow users to learn faster.   

1.1.2 Canadarm2 and Dextre 

Perhaps the robots that have been most utilised in space have been the large 

robotic arms outside of the ISS, such as the Space Station Robotic Manipulator 

System (SSRMS), which is also known as the Canadarm2, and the Special Purpose 

Dexterous Manipulator (SPDM), also known as Dextre [11]. Together with the 

Mobile Base System, they form the Mobile Servicing System (MSS), the most used 

tool for On-Orbit Servicing (OOS) in space. The SSRMS, a 7 DoF, 17 meter long 

robot, was largely designed to perform ISS assembly tasks and to capture visiting 

vehicles and other similar large-scale tasks [12]. Dextre, as a 2-armed robot, was 

made to perform external maintenance on the ISS. Dextre has the ability to use many 

different tools to robustly perform smaller-scale and more dexterous tasks than the 

SSRMS. Each arm has 7 independently controllable DoF with an ORU/Tool 

Changeout Mechanism (OTCM) as their end-effector [13, 14]. 

One of the most effective aspects of these robots are the latching end-effectors, 

which were specifically designed to firmly latch onto grapple fixtures strategically 

placed in many locations around the ISS and on incoming cargo and spacecraft. 

There are several types of grapple fixtures which allow for different capabilities. For 

example, the Latchable Grapple Fixture (LGF) is intended for longer-term stowage 

on the POA, while the Power and Video Grapple Fixture (PVGF) additionally allows 

for access to data, video, and power. These innovations have given versatility to the 

robots, allowing the SSRMS to relocate its base by "walking" from fixture to fixture 

around the station. This concept has also given a mechanism for combining robots 

together in a macro-micro configuration, where for example the SSRMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: a) A Soyuz-TMA simulator at the UK Space Conference 2019 at Wales. [Photo 

credited to the British Interplanetary Society.] 
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(Canadarm2) would position the SPDM (Dextre) in the best location while the 

SPDM performs the smaller scale tasks [12, 14]. 

The SSRMS can be controlled in multiple modes: joint control, end-point control, 

and automatic trajectory control. When using the different control modes the user 

must constantly consider several different frames of reference and coordinate 

systems [13], while looking at multiple camera angles to determine the best course 

of action to complete a given task. A certain level of autonomy has already been 

implemented into the SSRMS, such as the automatic trajectory control mode, which 

has allowed ground control to overcome the latency to the ISS and perform simpler 

tasks, including preparation and initial positioning of the robot arms [13]. The 

SPDM, on the other hand, is now mostly controlled from ground control on Earth 

despite the fact that it was initially designed to be controlled from within the ISS 

[15]. This is made possible through a series of tests called On-Orbit Checkout 

Requirements which ensure the safe operation of the SPDM even with significant 

amounts of latency. 

Training to use the Canadarm2 and Dextre occurs at the Robotics Training Centre 

of the Canadian Space Agency in Saint-Hubert, Quebec. The training centre includes 

a replica of the Robotics Workstation that is on the ISS and sophisticated training 

and simulation software [16]. While it is difficult to find information about the 

specific software used in this training centre, research groups have developed their 

own similar software to investigate the best ways to train astronauts and flight 

controllers how to control these robots. Belghith et. al., for example, developed the 

Robot MANinpulation Tutor (RomanTutor), which, in addition to providing a 

general simulation platform for practicing robotic control, did automatic path 

planning for a particular task and considered strategies for camera and view selection 

[17]. These tools could then be used to show trainees what an ``optimal" solution to 

task performance may be, even in complex and ill-defined domains. Using a previous 

iteration of this simulator, Fournier-Viger developed a cognitive model of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: A photo-realistic 3D simulator of the International Space Station (ISS) 

developed at Imperial College London [1]. The simulator allows the user to interact with 

the CanadaArm2 robot based on four camera views as shown at Figure 3.   
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Canadarm2 task performance to break down a complex and ill-defined task into more 

understandable steps, evaluating spatial representations [18]. 

Another simulator for the Canadarm2 is available on the CSA website [19]. This 

simulator plays more like a game, teaching the different aspects of Canadarm2 

control before allowing you to attempt a ``mission" utilising the skills that were 

learned in the tutorials. Control is carried out with a keyboard and mouse, allowing 

the player to move and turn the Canadarm2 to match various given visual cues. 

Training tasks within this simulator include following a circular trajectory with the 

end-effector using the camera placed on the end-effector, rotational control for 

precise docking, and finally a complete task in which the Canadarm2 is controlled to 

perform a task aboard the ISS involving the replacement of a component, and 

carrying an astronaut to perform a final task at this component. While this simulator 

provides insight into many of the necessary skills for Canadarm2 operation, it also 

provides real-time suggestions about which keys to press to successfully achieve a 

given outcome. This results in minimal cognitive load, and is likely be difficult to 

translate to real robotic control.  

Most recently, a Canadarm simulator was developed at Imperial College London, 

Figure 3, which aimed to provide both photorealism and increased cognitive load 

[1]. This simulator was built to allow for different grades of cognitive load through 

the addition of confounding factors such as latency, time pressure, and pieces of 

space debris which acted as obstacles to avoid. The simulator was also developed to 

be compatible with physiological data collection, and thus was paired with modules 

to collect EEG and eye-tracking data, as well as information about heartrate, body 

temperature, and Galvanic Skin Response (GSR). The collected data was 

synchronized via LSL and analysed to determine the effect of the added workload 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: In order to control the CanadaArm2, users rely on 2D views of cameras 

located at close proximity to the joints of the CanadaArm2 and other key locations at 

ISS.   
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from each of the proposed confounding factors. Measures from these sensors were 

additionally compared to a task performance score, which considered the user’s 

precision at each stage of the task, time to complete the task, and any errors or 

collisions that occurred.  

1.2 Cognitive Models Underlying NeuroErgonomics in Space 

Flight 

In the field of human factors and ergonomics, there is extensive research literature 

on how to develop human-centred designs of technology that aim to minimise errors, 

enhance performance and enable effective human-machine interaction [20]. The 

recent expansion in artificial intelligence (AI) and the success of these systems in 

information retrieval, robot vision and language processing automate low-level 

applications [21, 22]. These systems are gradually adapted to everyday life and have 

already automated several manual tasks. However, how these systems can interact 

for higher-level decision making and whether we can trust them remains a challenge. 

In addition, safety concerns and ethical considerations with relation to the underlying 

responsibility are profound. These factors imply that recent progress will translate 

several applications from manual to semi-automatic, and thus designing supervisor 

control mechanisms that take into consideration human factors and ergonomics are 

in high demand.   

Neuroergonomics are concerned with human brain function and performance in 

a number of critical applications that range from medical interventions, aviation, 

driving and so on [23-25]. Experts in the field predict that within the next 20 years, 

neuroimaging technologies involved in human cognitive augmentation would 

mature to seamlessly allow monitoring and enhancement of brain processes [23]. 

Brain functions, such as decision making, cognition, attention, vigilance and 

situation awareness are important to complete a task successfully. In 

neuroergonomics, there is a distinction between vigilance, also referred as sustained 

attention, and attention under workload. Vigilance is usually tested under low 

workload and it involves the ability to detect a stimulus, which is important in 

applications such as air traffic control, surveillance and inspection tasks. Usually, it 

is evaluated based on the reaction time, which is the time from the stimulus 

presentation to a simple motor response of the subject. On the other hand, 

maintaining attention and situation awareness under workload involves shifts of 

attention via higher cognitive functions and executive control. In these scenarios, 

spatial attention, which refers to the ability of orienting attention to a particular 
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direction, and theories based on working memory models have been employed to 

explain the information processing that underlies brain function.  

These functions are supported by interconnected circuits that involve several 

brain regions and they are significantly affected under stress and workload. In 

particular, the prefrontal cortex (PFC) has been implicated in attention control, 

concentration, executive function and decision making [25-27]. Furthermore, 

ventromedial PFC and dorsomedial PFC are implicated in social processing and 

anxiety [28]. In sustained attention both top-down and bottom-up networks act in 

parallel to facilitate selective attention [29-31]. Selective attention is referred to as 

the ability of the brain to prioritise sensory information. The former originates from 

forebrain regions that include the PFC, the parietal cortex, somatosensory cortices 

and subcortical structures, such as thalamus and basal ganglia. It encodes brain states 

related to working memory, reinforcement learning, selection of task-relevant 

processes and inhibition of task-irrelevant processes [32]. On the other hand, the 

midbrain network is thought to exert a bottom-up regulation of attention related to 

the saliency of the stimulus. This process is thought to have an evolutionary purpose 

in order to alert humans when a ‘threatening’ stimulus, as for example when a pop-

up stimulus enters their peripheral vision, whereas the forebrain enables humans to 

concentrate on a particular target.  

In humans, only a small fraction of the visual field corresponding to the fovea is 

perceived in fine detail. Visual spatial attention refers to the ability to select relevant 

objects/stimulus and process information within the underlying area of the visual 

field [33]. Spatial attention results in increasing the gain of the mean firing rate and 

decreasing the noise correlations across neuronal populations related to the relevant 

location/objects [34]. This improves detection and discrimination of relevant 

stimulus and shortens reaction time. The processing of visual information is complex 

and involves the ventral and dorsal neuronal pathways that start from the primary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4:Human Factors and NeuroErgonomics in Space Flights. Current research 

needs to be seen in light of the homeostatic adaptations that take in space due to 

physiological, psychological and habitability factors in space.  
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visual cortex and extend to the temporal lobe and parietal lobe, respectively. The 

former pathway is involved in object recognition, whereas the dorsal pathway is 

mostly related to spatial awareness and spatial attention [33].  

Damage of the spatial attention pathways could result in directional bias in 

orienting attention. This is a common clinical syndrome called spatial neglect. It is 

thought that spatial neglect is the interaction of several deficits that involve, 

directional bias in competition for selection, spatial working memory deficits and 

sustained attention deficits [35, 36]. Although, the exact brain regions involved in 

visual selective spatial attention is under debate, the Parietal Eye Fields (PEF), 

Frontal Eye Fields (FEF) and the Temporal Parietal Junction (TPJ) have been 

highlighted as most likely to play an important role [35-38].  

Eye movements and spatial attention are interrelated, since it is evident that 

usually eye movements follow attention (overt orienting gaze).  In fact, neuronal 

circuits that control attention are also related to eye movements/saccades [31]. For 

example, animal studies have shown that after unilateral removal of the FEF in 

prefrontal cortex, the animal could not direct gaze in the affected hemisphere. Overt 

orienting can be either reflexive or controlled. Reflexive movements are related to 

midbrain, bottom-up attention selection mechanisms rather than conscious 

processing of the visual field. In this context, the consensus is that there is a single 

mechanism that drives both selective attention and motor preparation. Nevertheless, 

humans are able to mentally direct their attention to spatial locations without moving 

their eyes (covert orienting gaze). This has been found to slower saccades and to alter 

the underlying perceptual processes. 

 

 

1.2.1 Neuroergonomics and Spatial Attention 

Several theories have been developed to explain and model how brain processes 

information with relation to attention and decision making [30, 39]. These models 

introduce the concept of working memory, which describes the ability of the brain 

to hold a limited amount of information for a short period of time while it is 

processed [29]. Working memory does not only refer to the ability to memorise but 

also the ability to suppress irrelevant information. Stimuli compete to gain control 

over working memory, whereas gaze and spatial attention processes play an 

important role in it, Figure 5. Visual, auditory and haptic information enter the ‘short-

term sensory stores’ (STSS), which retain information of up to a fraction of a second 

[39].  STSS is thought to have a large capacity but short duration, whereas working 

memory can persist for several seconds but is restricted to few items [39]. This is 

also referred to as an ‘attentional blink’ and is the reason that stimulus experimental 

setups allow a 300 millisecond gap. This restricted attentional capacity emerges 

within sensory modalities. In other words, concurrent attention to visual stimuli 

limits attention to another visual stimuli but it does not limit concurrent attention to 

auditory stimulus [40]. Furthermore, it was shown that processing and recognition 

of a scene takes 100 milliseconds, though work has showed that humans are able to 
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recognize scenes better than chance even with rapid stimulus presentation of less 

than 50msec [41, 42].   

 

 

1.3 Workload and Performance Measures in Human-Robot 

Collaborative Tasks 

There is an overwhelming amount of evidence to suggest that workload and 

performance are strongly related. In fact, when humans face increased demand their 

performance may deteriorate, they will perform more errors, their tasks will be less 

accurate, they often lose awareness of their surroundings and they become 

increasingly frustrated and fatigued [39]. However, the relationship between 

workload and performance measures is not linear. Lower workload than normal can 

also result in similar performance deterioration, possibly due to boredom and drifts 

of attention. Therefore, it seems that there is a subject-specific point of workload 

where performance reaches its maximum, which normally reflects that the task is 

challenging, yet does not overwhelm the operator. Overall, human performance 

depends on a number of factors that include time pressure, operator’s fatigue, 

training level, innate abilities to adapt to the task in hand and resilience to stress and 

anxiety. Furthermore, workload and performance may need to be compromised to 

satisfy operational goals.  

Performance in human-robot collaborative tasks should take into account the 

ability of the human and also consider the ability of the robot to adapt and optimise 

its actions with relation to human responses. There is considerable effort in the 

research community to develop human-robot collaborative strategies to ease the 

cognitive and physical load and thus minimise workload. However, there is a risk 

that with increased automation, humans become observers and they are not actively 

engaged in the loop. This can also cause boredom, loss of awareness and lack of the 

ability to comprehend the complexity of the system. All these factors can result in 

Figure 5: A consensus cognitive model that show how attention and working memory 

interact to process information. 
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the inability of the human operator to control the system if the automated mode is 

inaccurate or fails.   

Mental workload can be sub-categorised based on human sensing and cognitive 

processes into visual, auditory, tactile and cognitive workload [43]. Visual 

perception is influenced by contrast, colour, dark-adapted vision, depth perception, 

movement detection and glare. Hearing perception is also influenced by loudness, 

pitch and location. Finally, with tactile sense, we perceive differences in temperature, 

pressure, and the frequency of vibrations of our skin. Human capacity to absorb and 

process information is called perception and is influenced by internal cognitive 

models and expectation. Human perception has the ability to fill as well as remove 

information based on contextual information and this mismatch between reality and 

perception of sensory information could lead to misinterpretations and illusions.   

Characterising workload is an important yet quite complex process. Most 

common subcategories include mental/cognitive demand, physical demand, 

temporal demand, performance, frustration and effort. In fact, the NASA Task Load 

Index (TLX) has adopted this method to measure workload via subjective self-

reports. Self-assessment reports are normally used shortly after the task in hand while 

user’s memory is still fresh. To overcome the fact that subjects perceive types of 

workload differently, the TLX index requires them to rank the order of each 

subcategory. Subjective assessments are disruptive, they are not continuous, and they 

suffer from scaling problems, since most operators do not translate increases in 

workload, linearly. 

Task-specific performance measures provide an objective way to measure 

workload based on the assumption that the ability to perform a task well is affected 

by workload. Primary task measures include task analysis, speed, accuracy and levels 

of activity. Task analysis includes various methods that break user’s actions into sub-

tasks, and they count how many are completed successfully. Measuring activity 

involves counting the number of steps per time required to finish the task. Actions 

may include control inputs, verbal responses, mental arithmetic, visual searches and 

decisions. Large numbers of measured activity imply a high workload. Task analysis 

and measuring activity requires the ability to break down the task and response, 

respectively, into specific modules, which might not be trivial in real-world dynamic 

environments. Speed and accuracy are the simpler performance measures to estimate 

but they cannot disassociate operator condition from system failures, such as slow 

response. Furthermore, workload in decision making tasks is difficult to characterize 

based on speed and accuracy alone. None of these measures take into account the 

skills of operators.   

The workload is also modulated under single or multiple task demands. 

Secondary task measures estimate the workload of a task by looking into how well 

the operator performs a second task simultaneously. These techniques quantify how 

many ‘spare resources’ the operator has and provide more information about the 

condition of the operator. However, they rely on the assumption that both tasks are 

competing for the same resources and that the performance of the first task remains 

constant. Furthermore, different operators may have different strategies to complete 

the first or second task. Careful design of the interaction of two tasks is important to 

provide meaningful conclusions. 

A recent study has used a dual task design to understand the effect of engagement 

on workload and performance during driving [44]. The driver was instructed to 
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maintain a specific distance from the vehicle in front, which was changing its speed 

at random. Primary performance measures included speed control and braking 

response time, while the NASA TLX index was also recorded after task completion. 

An auditory stimulus, which was selected to be interesting, boring or neutral was 

playing at random during the task. The results revealed that the time required to brake 

(response time) was longer while the driver was listening to an interesting stimulus. 

Also, the drivers perceived the interesting auditory stimulus to be less demanding, 

although the stimulus has been objectively chosen with similar difficulty index.    

It is important to note that auditory processing channels are considered to be 

independent from visual processing channels. This is the reason that in ergonomics 

studies they have been suggested as effective communication channels when the 

primary task requires visual attention. Nevertheless, further processing of the 

information would require the allocation of more cognitive resources.  

Dual-task designs are powerful as they can disentangle the influence of multiple 

sensing and cognitive pathways. For this reason, they have been used extensively in 

several studies in aviation, driving and surgery. It should be noted that the ability of 

astronauts to successfully perform dual tasks is affected both during the early 

adaptation to microgravity and towards the end of the flight. It is thought that the 

cause of this deficit is due to the increased fatigue and stress associated with both of 

these phases.  

Fatigue and sleep deprivation have been associated with several serious accidents 

that resulted in collisions in space. In 1997, the Progress spacecraft collided with the 

MIS space station and caused extensive damage on the solar array modules. 

Although the astronauts claimed that there was a delay in the navigation system, 

NASA attributes the accident to workplace stress, fatigue and sleep deprivation. 

Space imposes unique challenges on astronauts that also result in an increased level 

of fatigue. For example, 60-80% of astronauts will be affected by space motion 

sickness, micro-gravity also affects their sleeping patterns, along with background 

noise, lack of adequate thermal control, lack of fresh air and so on.  

Fatigue could be muscular or mental and is caused by prolonged physical or 

mental tasks, respectively. When it relates to emotional stress, fatigue can also be 

characterised as acute or chronic. There is no clear distinction between workload and 

fatigue. A problem of disentangling workload from fatigue is that there is no clear 

definition. Furthermore, most studies do not distinguish fatigue from sleepiness, 

since it is far more difficult to disentangle one from the other.  Countermeasures of 

fatigue target regulation of circadian rhythm with scheduled sleep breaks along with 

well scheduled meals. 20-30 minutes sleep before night shifts helps to increase 

alertness along with administered caffeine and/or other pharmacological agents. 

Robotic exoskeletons have been suggested to tackle muscle fatigue by providing 

support to both the lower body and upper body [45].  

Several measures have been proposed to quantify fatigue. The occupational 

fatigue inventory represents fatigue in five physical dimensions (lack of energy, 

physical exertion, physical discomfort) and two mental dimensions (lack of 

motivation and sleepiness). Other measures, such as the occupational fatigue 

exhaustion recovery scale, quantify the need for recovery. This measure describes 
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fatigue in three scales that include acute fatigue, chronic fatigue and intershift 

recovery. 

 

1.4 Brain Computer Interfaces in Workload and Attention 

1.4.1 EEG based BCI 

Electroencephalography (EEG) is a sensing modality which measures 

electrophysiological signals coming from the brain. EEG sensing systems can come 

in many forms, from implantable systems requiring surgery [46] to dry, wearable 

caps that favour efficient setup as opposed to optimal signal to noise ratio. Because 

most healthy individuals would not require or want invasive brain surgery for the 

monitoring of workload, this chapter includes consideration of only wearable non-

invasive EEG systems. 

Much of the foundational work related to human EEG recordings was established 

in a series of 15 reports by Hans Berger [47]. Berger investigated many of the 

fundamental questions related to EEG recordings, such as types of electrodes, 

recording locations, artifact removal, and Fourier analysis of the recorded signals. 

There has been significant development with regard to each of these topics in the last 

century, but there is still much to learn about what EEG signals can indicate and how 

they can be used. 

One of the first considerations for EEG data recording is the removal of unwanted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6:Brain Computer Interfaces are coupled with advanced 3D space simulator to 

monitor human attention, cognitive workload and spatial learning. a) An advanced 3D 

simulator has developed to allow users to control canadarm2 under realistic scenarios 

[1, 2]. Wearable EEG and eye-tracking technology is combined to monitor 

neurophysiological responses. b) Combined fNIRS and EEG technology promises to 

improve our understanding on learning processes and cognitive workload, c) An example 

of wearable eye-tracking device. 
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artifacts that are picked up by the electrode which may contaminate the signal. There 

are several known artifacts which originate from the eyes, muscles, heart, and 

environmental factors which researchers have attempted to remove based on 

knowledge of the artifact [48]. One way of doing this is by simultaneously recording 

data from a separate reference and altering the recorded EEG signal based on the 

recorded reference. When using the same type of electrode, the reference signal 

could be simply subtracted from the recorded signal. Other methods include the use 

of unsupervised learning algorithms such as principal component analysis (PCA) and 

independent component analysis (ICA), and the use of filters to remove either known 

or learned noise from the environment [48].  

Wearable EEG systems typically use multiple electrodes which can provide 

spatial information about a person's ongoing cognitive activity. The 10-20 system is 

an international standard for electrode placement, which labels each electrode 

placement based on region such as Frontal (F), Central (C), Parietal (P), Occipital 

(O), and Temporal (T) regions. The system also labels electrodes based on the 

longitudinal fissure, where all electrodes along the fissure have a z placed after their 

regional marker. An example of a labeled wearable EEG system can be seen in 

Figure 6a. This labeling standard makes it easier for studies to easily compare their 

results even if they are using different EEG recording platforms.  

Consideration of the spatial location of EEG electrodes is often not 

straightforward because the source of a particular brain response is not always 

known. For this reason, the spatial relationship between different electrodes can be 

numerically defined, which could provide a more intuitive understanding of the 

meaning of changes in various features. For example, researchers may want to define 

a spatial filter that only allows for consideration of the frontal regions of the brain. 

Therefore, in this instance electrodes nearest to the frontal region would have most 

influence over the signal, while electrodes that are far away may be entirely removed 

from the signal. These spatial relationships between electrodes can also be learned 

through algorithms such as Common Spatial Patterns (CSP), which can reduce the 

feature space for a classifier. However, the feature space should only be reduced in 

such a way that maximises its practical utility. For example, using miniaturised EEG 

caps with few channels may not need any further spatial filtering, but could provide 

information that is unclear due to noise and cannot be verified by comparison with 

neighbouring electrodes. From this perspective, utilising more electrodes is more 

practical, despite the fact that features may not be directly extracted from each 

electrode. 

As compared to other brain sensing modalities, EEG is desirable because of its 

high temporal resolution, with recording frequency up to 1000 Hz. Such high rates 

allow for analysis of not only temporal features, but also features that are calculated 

in the frequency domain, such as Power Spectral Density (PSD). Use of the Fourier 

transform in EEG processing is common, as the signal's changing frequency profile 

is often indicative of changes in mentality. 

EEG signals are commonly separated into several broad frequency bands such as 

the delta (1.5-4 Hz), theta (4-7.5 Hz), alpha (7.5-12.5 Hz), and beta (12.5-30 Hz) 

bands. While approximate values are given here, different studies may use slightly 

different values for the boundaries of these frequency bands. It has been indicated, 

for example, that a decrease in alpha power is associated with an increase in mental 

arousal, resource allocation or workload, while theta power tends to increase along 
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with task requirements [49]. These power changes are also most noticeable in pre-

defined regions, with alpha decreases being mostly noted in parietal regions, and 

theta increases being noted in frontal regions.  However, research has indicated that 

mu and alpha rhythms increase in power for humans in a microgravity environment, 

so previous assumptions about changes in EEG signals may need to be adapted based 

on new research into the effects of microgravity [50, 51]. 

EEG has been used to measure mental workload in studies of air traffic 

controllers, airline pilots, drivers, and a wide range of humans performing cognitive 

tasks, such as memory or visuospatial tasks [52]. One of the most common tasks for 

workload measurement has been the n-back task, in which users have to remember 

whether the currently displayed stimulus was the same as the stimulus shown n trials 

ago. The difficulty of this task can be modulated simply by changing the value of n, 

so different methods of measuring mental workload can be easily validated and 

compared [49, 53]. Other ways of validating workload include relatively simple pre-

defined simulated tasks. Because the tasks are simulated, parameters can be easily 

changed to influence task difficulty. The signals for each task difficulty level can 

then be compared to make data-based theories about how brain function changes 

with regard to task workload.  

One typical way of validating a method of workload measurement is via 

classification, where preprocessing leads to feature selection, and eventually the 

selected features are fed through a classifier such as SVM [49] or discriminant 

function analysis (DFA) [52]. The ability of the model to determine workload is thus 

evaluated based on the accuracy of the classifier and other related metrics. If the 

model is evaluated to work well in classification, then the features that led to higher 

accuracies can be analysed to draw conclusions about brain function with increased 

workload. 

 

1.4.2 fNIRS based BCI 

Functional Near Infrared Spectroscopy (fNIRS) is a non-invasive, optical 

neuroimaging technique that allows the measurement of oxygenated hemoglobin 

(HbO) and deoxygenated hemoglobin (HbR). fNIRS light sources are normally 

arrays of LEDs or lasers that emit light in at least two wavelengths. The light 

penetrates the scalp and cortical regions and its relative absorption is measured by 

the fNIRS detectors. This allows the detection of relatively small changes in near-

infrared light absorption, which relates to changes in HbO and HbR according to 

Beer-Lambert law [54].  

fNIRS is resilient to eye-movement artefacts and this is one of the reasons it has 

been particularly common to measure prefrontal activation, which is related to 

executive function and its function has been found to be modulated with workload 

and training. Furthermore, miniaturised sensing technology has allowed fNIRS 

systems to become portable and wireless. This facilitates the continuous acquisition 

of brain signals in real-world settings. However, fNIRS electrodes only measure light 

within a few centimeters from the scalp, which limits the application of fNIRS to 

cortical regions only.  

Several fNIRS studies aimed to replicate and confirm findings of functional 

magnetic resonance imaging (fMRI), which is the gold standard in functional 

neuroimaging and has shown average increases in oxygenation with increased 

workload/difficulty. Typically, in these studies, workload is modulated by N-back 
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tasks [55]. In these scenarios, fNIRS data are recorded while the participant is 

serially presented with stimulus and he/she is instructed to respond when the stimulus 

matches the nth stimulus ago. N-back tasks have been found to activate the 

dorsolateral (dlPFC) and the ventrolateral (vlPFC) prefrontal cortical (PFC) brain 

regions. Furthermore, these studies show increased frontal-parietal connectivity [54].  

In neuroergonomics, fNIRS exploits basic neuroscience principles to assess the 

design of new systems in terms of workload, parameter optimisation to achieve best 

cognitive capacity and training. The application scenarios span from air traffic 

control (ATC), aviation pilots and surgery [25]. In ATC, several studies based on 

fNIRS aim to assess the ergonomics of new human-machine interaction designs 

along with the number of aircraft that can safely operate in an airspace. In these 

cases, fNIRS activation would increase with workload up to a safety critical point, 

where activation is plateaued. It is evident that any further workload will not be 

safely handled from the operator and the probability of an accident increases 

dramatically. It should be highlighted that this point cannot be detected based on 

self-reported measures.  

fNIRS activation in the prefrontal lobe with relation to workload is also 

modulated by the expertise level of the operator. Training results in cognitive 

adaptation processes that optimise attention control and problem-solving and thus it 

releases cognitive resources. The PFC activity in experienced operators is reduced 

compared to novice operators under the same tasks. This finding has confirmed both 

in ATC as well as in surgical tasks [25]. Therefore, neuroimaging studies offer a way 

to track the efficiency of training. Few days training in unmanned aerial vehicle 

piloting highlighted distinct phases of learning. Initially, increased activity in fNIRS 

reflected increase performance. In later stages of training, increased performance 

was associated with reduced activity in fNIRS. Similar results have been observed 

in surgical residence, where it was also shown that training phases is also modulated 

by the complexity of the underlying task. 

 

1.4.3 Eye-Tracking based BCI 

Eye-tracking data (e.g., eye movements and the pupillarity response) can 

elucidate visual interaction with complex user interfaces, such as where and what the 

operator looks at, how long the operator looks at it, and which eye movement 

happens when looks at it. This information also reflects the cognitive workload of 

the operator during teleoperation. Recently, eye parameters have gained extensive 

popularity in the estimation of mental workload for those needing to perform 

complex tasks under stress, such as pilots [56], drivers [57, 58], and surgeons [59, 

60]. The most significant workload metrics based on eye parameters can be 

categorized into pupillary response (meaning pupil diameter and pupil diameter 

deviation), fixation (number of fixations, fixation duration, and fixation frequency), 

saccades (speed and amplitude of saccades), and blinks (blink frequency, number of 

blinks, blink duration) [61]. 

1.4.3.1 Point of Gaze and Eye Movements 

The 3D eye model is typically simplified as the model demonstrated in Figure 7a, 

which consists of eyeball, cornea, and iris. From this model, the optical axis can be 

defined as the line that passes through the centres of the eyeball, cornea and iris, and 

the visual axis indicates the line from the Point Of Gaze (POG) to the corneal centre. 

There exists a constant deviation, namely Kappa angle, between the visual axis and 
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the optical axis. The final POG is determined by averaging the estimated gazes of 

left and right eyes while both eyes are gazing at the same point. In addition, the 

direction of the optical axis and the rotation of the eyeball can be characterized by 

Listing’s law, which describes the 3D orientation of the eye and its rotation axes by 

defining a Listing’s plane[62]. Specifically, the vertical and horizontal axes of 

rotation formulate this Listing’s plane as illustrated in Figure 7b, and the optical axis 

that is orthogonal to the plane indicates the torsional rotation. For eye tracking 

research in space, it should be pointed out that gravity has a critical impact on eye 

movement and head-eye coordination [63]. It has also been proven that the 

orientation of Listing’s plane significantly changes under microgravity, where the 

elevation can be tilted backwards by approximately 10 degrees during a parabolic 

flight experiment [64]. 

With the successful tracking of the movement of eyeballs, three basic eye 

movements can be additionally defined as illustrated in Figure 8, including saccades, 

smooth pursuits, and fixation [65]. A saccade indicates the rapid movement of the 

gaze point from one position to another, which can also be regarded as shifts between 

fixations [66]. Fixation indicates the gaze fix or pause on a small region of interest 

[66]. It can be typically detected when the POG is within a particular area or if the 

gaze velocity is smaller than a threshold. Smooth pursuit represents the eye 

movement that follows a moving object [65]. For the teleoperated task described in 

Freer et al. [1], for example, the saccade movement occurs when the user switches 

the activated camera or avoids the debris by observing different cameras. The user 

will achieve fixation while adjusting the robot arm in a fine manner or thinking about 

the control strategy. During the teleoperation, the users will tend to have smooth 

pursuit while performing the translation of the end-effector. 

 

1.4.3.2 Eye Tracking Systems 

The existing techniques for eye movement and gaze detection include magnetic 

search coil, Electro-Oculography (EOG), and Video-Oculography (VOG). 

Magnetic search coil: For human eye movement tracking, the subject needs to wear 

      

                            (a)                                                           (b)            
Figure 7: a) Demonstration of the top view of two 3D eye models and the point of gaze 

(POG) on the scene plane. b) Illustration of the listing’s plane and the 3D orientation of 

the eye and its axes of rotation. 
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the contact lens that contains coils of wire, which are also known as Helmholtz coils. 

In the experiments, the subject sits inside a specified area with a magnetic field, then 

eye movement can induce a variation of voltage in the contact coils. Compared to 

other systems, the search coil system can achieve high detection precision of eye 

movement in both spatial and temporal resolution, though it typically causes some 

discomfort for the human due to its semi-invasive nature and additionally involves a 

complicated setup procedure [67].   

Electro-oculography (EOG): Another popular technique for tracking eye 

movement is to measure the corneo-retinal standing potential differences between 

the front and the back of the human eye, which is known as Electro-Oculography 

(EOG) [68]. EOG is advantageous in measuring the horizontal/vertical rotation of 

the eyeballs by attaching two surface electrodes to the edges of the orbits along the 

horizontal/vertical direction. However, the EOG signal is susceptible to noise and 

cannot measure the pupil diameters. 

Video-oculography (VOG): Recent advances in computer vision technologies have 

led eye-tracking systems to adopt video-based techniques. Most video-based gaze 

tracking systems focus on the estimation of gaze direction, which can be categorized 

into remote and wearable gaze trackers. The basic idea is to detect the 2D or 3D 

parameters of the near-circular pupil from single/stereo camera. Then the rotation of 

the eye with respect to the camera can be determined after the appropriate calibration 

procedures. VOG eye-tracking accuracy heavily depends on the quality of the 

calibration process before recording and the pupil detection during the recording 

[69]. Pupil detection is more challenging with remote eye-tracking systems as 

compared to wearable ones due to the corneal reflections, occlusions, and eye blinks. 

We refer the readers to [67, 68] for more details on various eye-tracking techniques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Illustration of three basic eye movements and the gaze points of fixation and 

eye saccade on the image planes. Accordingly, features such as fixation duration and  

saccade speed can be extracted. 
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1.4.3.3 Eye-tracking based Mental Workload Detection 

In the following, we give a brief review of the relationship between 

mental/cognitive workload and different commonly used eye tracking parameters. 

In the last century, pupil diameter has already been used as an index of cognitive 

workload. Extensive research has revealed that the pupil diameter increases with the 

task difficulty, which is highly related to the mental workload [70, 71]. One of the 

remaining challenges is that various confounding factors unrelated to workload, 

including changes of luminance condition and emotional arousal, may also affect the 

pupillary response [72]. The Index of Cognitive Activity (ICA) [73] can provide an 

estimation of cognitive workload level by disentangling pupil dilations caused by 

cognitive activity (small rapid dilations). The ICA is determined by the changes of 

pupil dilation while performing a specified complex task. The core idea of ICA is to 

perform wavelet analysis to identify the abrupt pupil dilation in the eye-tracking data 

[73]. When the rapid pupil dilation is larger than a specified threshold, it reflects the 

effect of cognitive activity. Higher ICA levels per second represent a higher degree 

of cognitive workload [59]. 

With the recent advances in gaze tracking technologies, studies have been 

conducted to find the relationship between eye fixations and cognitive processes 

since the 1970s. [74] has demonstrated that the locus and duration of eye fixations 

are all closely related to the activity of the central processor. Following this, 

extensive studies have proven that the duration of fixation has a negative relationship 

with the mental workload during various complex tasks [56, 75, 76]. In other words, 

higher fixation duration will be observed during lower mental workload condition 

and lower fixation duration will occur during higher mental workload tasks. Results 

in [76] also emphasized that the fixation duration is the most suitable metric among 

various parameters to estimate mental workload. Furthermore, in a study on visual 

attention of pilots, researchers have found that expert pilots will have more fixations 

on different instruments/displays with shorter duration time [56]. 

Eye saccades have become a popular metric for studying motor control, cognition 

and memory [77], however, a significant relationship between the amount of 

saccades and mental workload has not been observed [75, 76]. [76] conducted the 

N-back memory experiment with four difficulty levels to induce mental workload, 

in which 17 eye parameters were evaluated to investigate the relationship with 

mental workload. Results have demonstrated that the fixation duration and eye blink 

parameters show a significant relationship with workload, while the saccade related 

parameters failed to show a significant relationship. In [78], driver distraction was 

evaluated by detecting eye saccade movements. They have found that the older group 

shows worse performance with mental workload under the distracted driving 

conditions. [56] also suggested that expert pilots have more saccades on different 

instruments compared to novices. 

Previous studies also found that blink frequency and blink duration showed a 

significant positive relationship to mental workload [61, 76]. [57] demonstrated that 

blink duration, compared to blink frequency, is a more sensitive and reliable 

indicator for workload detection. Similar to blinks, the percentage of eye closure 

over time can be used as a measure of fatigue, which has been extensively applied 

for driving fatigue detection [58]. 
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1.4.3.4 Eye-tracking based Skill Assessment 

Eye-tracking data can also be adopted as an objective tool for skill assessment 

[60], with potential applications in training for improving performance. Recent 

research has demonstrated that the eye movements have significant differences 

between novices and experts in aviation [56] and medicine [59]. [56] has shown that 

expert pilots tend to have more fixations on different instruments and shorter dwell 

time on each instrument. Meanwhile, expert pilots manage to extract more relevant 

information from their peripheral information. For surgeons, differences in eye 

metrics reflecting focused attention can also be found between junior and senior 

surgeons. Senior surgeons have higher fixation rates because they know what they 

are looking for and where to locate it, and simultaneously, they have lower ICA 

values over junior surgeons as they do not experience the same degree of cognitive 

workload in surgical procedures [59, 60]. 

 

1.4.4 NeuroImaging in Space 

Neurophysiological responses are altered in space due to several factors listed in 

Figure 4 that include physiological, psychological and habitability issues. Some of 

the physiological changes include cognitive/neurological alterations, increased 

fatigue, changes in circadian rhythm, changes in stress hormone levels and immune 

function [79]. Most of the variations in brain neurophysiology occur as a result of 

microgravity. Microgravity results in a shift of body fluid towards the head and this 

has been implicated in neurophysiological adaptations that last several weeks after 

the space flight [80]. In fact, both structural and functional brain changes have been 

demonstrated in studies [50, 51, 80, 81].  

The brain adjusts to changes such as a shortened sleep cycle and microgravity, 

which has been reflected in changes in heart rate variability (HRV), changes in brain 

rhythms and regulatory brain connectivity networks, such as the default mode 

network (DMN) [80]. The DMN emerges during rest and its function manifests from 

interactions across several brain regions. It is thought to regulate the autonomic 

nervous system and its interaction with other major brain networks, such as the 

Salience Network, reflects shifts in focused attention [80, 82]. In space the DMN 

plays an important adaptation role that is also reflected in changes in the human 

oscillatory brain activity [50, 51]. Furthermore, the close relationship of the DMN to 

the autonomic system results in changes observed to the HRV.  

It is important to realise that most of the scientific evidence for these changes does 

not come from studies conducted in space. Instead, some of the studies compare 

Figure 9: University of North Dakota Space Analog Simulations (Photo provided by Dr 

Travis Nelson and Prof. Pablo De Leon. ) 
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neuroimaging/physiological data obtained from astronauts before and after space 

flights. Other studies use simulation environments to imitate some of the common 

conditions encountered in space. The most notable conditions are confinement and 

isolation along with microgravity. Some of these simulation experiments take place 

in cages to resemble the extreme psychological and physical space conditions, such 

as isolation and confinement. For example, the Space Studies Department at North 

Dakota has a specialized facility to resemble ‘Mars’ missions, Figure 9, and to test 

new spacesuit technologies along with how they affect mental workload [83]. There 

are also human activities, such as Antarctic expeditions, that in some cases provide 

a close analog to space missions. On the other hand, microgravity effects can be 

simulated with bedrest approaches, in which the subject is asked to lie on a bed that 

is inclined downwards by roughly six degrees [79].  

These experiments exert mental and physical pressure on individuals and they are 

difficult to complete. One major limitation is the small number of subjects and thus 

the inability to extract statistically significant results. This problem is more profound 

in early studies and it is exacerbated by the fact that experimental conditions between 

studies and exact protocols differ significantly from mission to mission. As the 

quality of portable neuroimaging equipment improves and becomes more practical 

and less cumbersome, BCI will be adapted to more realistic scenarios in space and 

aviation. In addition, space agents like NASA have already developed technology to 

reduce motion artifacts and improve accuracy of similar systems [84].  

 

1.5 Artificial Intelligence in BCI-based Workload Detection 

Typically brain computer interfaces rely on signal preprocessing to remove 

artifacts, which depend on the nature of the signal, followed by feature extraction 

and classification Figure 10. There is large literature that has accumulated knowledge 

derived from well-controlled lab experiments on tasks that modulate workload, such 

as the n-back task mentioned earlier. However, there is far less work to address 

Figure 10: Classical BCI framework it involves signal acquisition followed by machine 

learning techniques to preprocess the signal, extract features and perform classification. 

Intuitive interactive approaches can increase the robustness of the BCI [3, 4].   
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challenges in real environments [85]. This is partly because BCIs are sensitive to 

motion artefacts and interference. Even in the most well-controlled environments 

subject variability in BCIs hinders the robustness of the device and high 

classification rates are difficult to achieve for more than two classes [3]. 

Furthermore, reliable signal detection entails good coverage of key brain regions, 

which results in cumbersome equipment that are not pleasant to wear.  

Currently, there are three notable categories in workload detection and modeling 

that drive research forward: i) work that extracts cognitive models derived from 

neuroimaging data that allow us to explain differences in the signal between 

workload conditions [86]; ii) Multi-modal fusion, which exploits machine learning 

algorithms to extract features from several modalities that include EEG, fNIRS, eye-

tracking and physiological measures to improve classification rates [85]; and iii) 

BCIs that are coupled with realistic paradigms of tasks that account for the 

complexity of the task in hand [1].  

Cognitive models of workload shed a light on the neurophysiological origins of 

the signals and can help eliminate spurious results due to motion and physiological 

related artefacts, such as breathing and heart rate. Growing evidence show that 

breathing patterns change under mental workload [86, 87]. This implies that 

occasionally BCIs classification rates may reflect motion artefacts and therefore do 

not generalize across subjects. Furthermore, this would hinder detection of peaks of 

performance with relation to optimum workload.   

Information fusion of neurophysiological, physiological and behavioral data is 

important in real world experiments because they have the potential to enhance 

reliability and sensitivity of workload detection, while they reduce uncertainty and 

address inter-subject variability. Neurophysiological recordings refer to modalities 

that directly measures brain signals. For example, combining neurophysiological 

modalities such as EEG and fNIRS can enhance temporal and spatial coverage [88, 

89].  

On the other hand, physiological modalities normally include eye-tracking, heart-

rate measurements and electrodermal activity (EDA) are indices of acute stress, 

Figure 4 and they are sensitive to mental states [90]. Normally, measurements can 

be obtained with far less sensors than classical BCIs and they are more discreet and 

comfortable to wear. However, they are also affected by physical activity and their 

ability to detect fine changes in mental workload is inherently limited when they are 

used alone.  

Behavioral measures include computer mouse movements and clicks and the 

reason they are used in workload detection is the fact that they reflect engagement 

and attention. Human pose tracking is among the most useful behavioral measure in 

human machine interaction as well as mental state detection [85, 90, 91]. Body 

posture reveals attentional engagement and it also relates with the difficulty and 

complexity of the task in hand [91]. For example, with increased workload the person 

may lean forward and the distance from the monitor is smaller.    

It is well known in signal-processing that information fusion from independent 

sensors improve signal-to-noise ratio and reduces bias of confounding factors. Multi-

modal fusion is normally implemented in four levels: sensor level, feature level, 

decision level and hybrid models. The level indicates at which point information 

fusion takes place along the processing pipeline [85]. At sensor level fusion takes 

place after preprocessing and it is suited when the raw data reflect the same physical 
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aspect. At feature level, fusion takes place after feature extraction and thus extracted 

features are estimated independently from each modality [88]. At decision level, 

feature extraction and classification has performed independently across modalities 

and fusion takes into consideration classification outcomes to reach a final decision.  

 

1.6 Cognitive Workload Estimation during Simulated 

Teleoperations – A Case Study 

To investigate neurophysiological indices of cognitive workload, eye-tracking 

and EEG data were simultaneously acquired from 10 healthy volunteers during 

teleoperations on the photo-realistic Unity simulator of the Canadarm at the ISS 

shown in Figure 2 [1, 92]. The aims of the study were to understand how exogeneous 

factors such as time-pressure and time-latency affect the performance of operators 

and how these changes link to neurophysiological indices related to spatial attention 

and cognitive workload. Under the time-pressure condition, users need to complete 

the task within a certain time (4 minutes), whereas in time-latency condition, 0-

1.5sec delays were added to the operator motion control to reflect the round-trip time 

that it takes for the control signal to reach the robot and the visual feedback to travel 

back to the operator. Time-pressure is common in safety critical operations and the 

ability of a user to operate under limited time can have a profound influence in the 

success of the operation.  The relationship between time-pressure and performance 

has been highlighted in section 1.3 and is supported by several studies in teleoperated 

robotics, such as surgical robots and other systems [86]. On the other hand, time-

latency is very critical in space/teleoperation applications due to the considerable 

time it takes the signal to cover large distances in space. Communication delay can 

also reflect hardware, design or software limitations and it is a well know problem 

in master/slave robotic systems.    

The simulation task has been picked to reflect a real-life scenario of the seven 

degree of freedom teleoperated Canadarm at the ISS and is described in detail in 

previous work [1, 92]. It requires the user to locate a new module close to the ISS, 

navigate the robotic arm to the grapple fixture of the module so the end-effector can 

attach to it and then move and dock the new module next to the Columbus module. 

As in real-life it is important that the operation is performed safely, so that the 

Canadarm and the module do not collide with the ISS or other objects. To ensure 

that the task is sufficiently difficult and it requires enhanced spatial abilities, debris 
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objects were added to the scene so that  the user would have to  find a way to navigate 

around them.   

Users were asked to complete three blocks that included: i) a familiarisation block 

(data from this part was not included in the analysis), which gave them the 

opportunity to familiarise themselves with the simulator without any added time-

pressure or time-latency. To start the main experiment, users were required to 

complete a simple version of the task without obstacles under four minutes. ii) A 

block of nine trials with randomised order that included three trials of time-pressure, 

three trials with a time-delay of 0.5 sec and three times with neither factors. Users in 

this block had the additional difficulty of navigating the robot around obstacles. iii) 

A latency block that included two trials for 0.5, 1.0 and 1.5 seconds of latency with 

and without time-pressure, a total of six trials. This block also required the users to 

navigate around obstacles.   

Several performance measures were taken into consideration that included i) 

grasp time (time between the beginning of the experiment and the grasping of the 

module), ii) dock time (time from the grasping of the module to the docking to 

another part of the ISS), iii) grasp distance error (distance error from the optimum 

grasping point), iv) grasp angular error (angle error from the grasping angle between 

the module and the robotic end effector) , v) dock distance error (distance error from 

the optimum docking point) vi) dock angle error (angle error from the optimum 

docking angle between the module and the docking station), vii) Grasp score (score 

after grasping the module) viii) Dock score (score from grasping to docking the 

module), ix) Number of collisions with obstacles per trial. ANOVA results for pair-

wise comparisons showed that the grasping and docking time between low workload 

and time-pressure conditions is statistically significant with a p-value smaller than 

0.05 and 0.005, respectively. Furthermore,  the number of collisions with obstacles 

per trial between time-latency condition and low workload condition was also 

Figure 11: Normalised values of performance measures during teleoperations via VR 

simulation of the Canada arm at the ISS that include: the grasp time (Gr. Time), grasping 

distance error (Gr. Distance Error), grasping angular error (Gr. Angle Error), grasping 

score (Gr. Score), docking time (D. Time), docking distance error (D.DistError), docking 

angular error (D. AngleError) and docking overall score (D. Score). These performance 

measures are examined in conditions that induce varying cognitive workload: The ‘Low 

Workload’ condition refer to performing the task without additional time-pressure and time-

latency (LW), under time-pressure only (TP), under time-latency of 0.5sec only (TL), under 

both time-pressure and time-latency of 0.5 sec (TP&TL0.5sec), under time-latency of 1 sec 

only (TL1sec), under both time-pressure and time-latency of 1sec (TP&TL1sec), under time-

latency of 1.5sec (TL1.5sec) and under time-pressure and time-latency of 1.5sec 

(TP&TL1.5sec). 
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statistically significantly with p-value smaller than 0.05. No significant differences 

were found to the precision and overall scores of the tasks. 

On the other hand, eye-tracking features reveal a number of statistically 

significant differences. The most prominent features include saccade frequency, 

mean saccade speed, mean pupil diameter, mean fixation duration and the Index of 

Pupillary Activity (IPA) [92]. Pupillary response, such as pupil diameter has been 

related to cognitive workload factors. However, it is also sensitive to other factors 

including the brightness of the scene. The Index of Pupillary Activity (IPA), which 

reflect small variations in pupil diameter has been suggested as a more robust 

measure of cognitive workload. Mean frequency duration, mean pupillary diameter 

and IPA reveal statistically significant differences between the low-workload and 

time-pressure conditions. Significant differences between time-pressure and time-

latency conditions are identified based on IPA only, whereas significant differences 

between low-workload and time-latency conditions were identified based on mean 

frequency duration and mean pupillary diameter. Finally, mean saccade speed and 

saccade frequency were more sensitive to time-latency conditions.  

It is observed that in this scenario eye-tracking based features are more sensitive 

to different experimental conditions than performance measures. Furthermore, 

performance measures need to be redefined for each different task. For example, in 

this study we broke down the task into subparts of the grasping and the docking 

phase. This approach is ad-hoc, requires specific expert knowledge of the task at 

hand and thus performance measures are not generalizable to new situations. Another 

important limitation is that only few simplistic performance measures, such as time 

duration, can be measured outside the simulation environment. Therefore, there are 

not suitable for closed-loop feedback mechanisms that could help the operator to 

improve his/her performance and alert the team if unexpected situations emerge. This 

indicates how important is to acquire neurophysiological indices during 

teleoperations and in this way facilitate the development of dynamic human-in-the-

loop systems.  

Further analysis based on two-class classification results of with/without Time-

Pressure and with/without Time-Latency, respectively, is demonstrated in Figure 13. 

The figure shows the results of SVM based on radial kernel functions across different 

time windows of 2secs, 5secs, 10secs, 20secs and the whole trial data [92]. 

Classification accuracy is shown for a number of eye-tracking features that include 

Figure 12: Normalised values of eye-tracking features with relation to different cognitive 

workload conditions. Blink Frequency (BF), Index of Pupillary Activity (IPA), Mean 

Fixation Duration (MFD), Mean Pupil Diameter (MPD), Mean Saccade Speed (MSS) and 

Saccade Frequency (SF).    

Mean

Median pval<0.05
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blinks, fixations, saccades, pupil characteristics, all features and ANOVA features 

with a significant difference extracted from each trial. Blinks and eye saccades 

features performed well in identifying time-pressure even with very small window 

size of 2secs. These eye-tracking characteristics could enable real-time evaluation of 

cognitive workload related to time-pressure. Pupil characteristics show less stable 

performance, whereas concatenating all features does not increase performance. 

Perhaps, this reflects that there are small number of samples compared to features. 

On the other hand, ANOVA features perform best in terms of classification in both 

with/without time-pressure and with/without time-latency. They work by evaluating 

the variance of the predictive variables on the response. However, their performance 

is low with small window sizes and reaches its maximum with the whole-trial data. 

Classification of with/without Time-pressure performs significantly better than 

classification of with/without Time-Latency condition. Further validation is required 

to understand whether this difference in performance reflects uneven sample sizes or 

Figure 13: Two-class classification results on with or without time-latency and with and 

without time-latency under the Leave-One-Subject-Out (LOSO) cross-validation protocol. 

Testing accuracy and F1 scores are shown for window sizes of 2sec, 5sec, 10sec, 20sec and 

the whole trial data for each classifier respectively. The classifier is based on SVM with 

radial basis kernel functions. A number of eye-tracking features are examined to determine 

whether they can reliably identify cognitive workload.  

Classification: with/without Time-Pressure Classification: with/without Time-Latencya) b)

Classification: with/without Time-Pressure Classification: with/without Time-Latencyc) d)
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whether time-latency is inherently more difficult to identify based on eye-tracking 

features.     

EEG data were also acquired simultaneously and analyzed to extract features and 

neurophysiological indices that are related to differences in cognitive workload [1]. 

Previous work hypothesizes that specific spectral powers, such as theta, alpha and 

beta as well as derived indices such as ratios of spectral power in these bands can 

robustly identify workload [93]. It is common for EEG data to be band-passed into 

five bands, which roughly categorized as delta (1-4Hz), theta (4-8Hz), alpha (8-

13Hz), beta (13-30Hz) and gamma (30-70Hz) [94]. These definitions relate to 

fundamental properties of human brain function that reflect distinct roles and 

underline communication between different brain regions. The theta band has been 

correlated with mental fatigue, higher demands of working memory and increased 

cognitive workload. It has been also linked to tasks that require sustained attention 

and it is anti-correlated with alertness and mental vigilance. On the other hand, 

occipital alpha oscillations are very well recognized during relaxed states and eyes 

closed. Alpha power is also anticorrelated with vigilance and attentional resources, 

whereas a suppression of alpha waves in occipital and parietal regions relates to more 

challenging and difficult tasks [93]. Beta 

power is also linked to cognitive 

workload as it correlates well with 

increased workload intensity and high 

levels of concentration and visual 

attention. 

EEG data are prone to artifacts, which 

result from muscle activity, eye blinks 

and movements. Independent component 

analysis (ICA) was used to decompose 

the EEG signal in statistically 

independent sources and reject the 

sources that are unlikely to have 

neuronal origin. Since beta power has 

been demonstrated as a strong predictor 

of cognitive workload, the EEG signal 

Figure 14:Beta power as a neurophysiological index of cognitive workload. EEG data are z-

normalised. A large variability is observed and for these reasons outliers have been 

excluded by estimating confidence intervals at 95% (beta95) and 99% (beta99), 

respectively. 

Figure 15:Beta power and Riemannian 

distance as measures of cognitive workload. 

Statistically significant differences are 

identified based on Kruskal-Wallis pair-

wise comparisons.   

pval<0.05 Mean

Median

Mean

Median
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was band-passed in beta band and the beta power was compared across different 

conditions. EEG data were z-normalised and segmented in 2sec windows. Figure 14 

uses violin plots to provide a sense of the data distribution and is shows a high 

variability and non-Gaussian distribution when all data are included (beta100). To 

alleviate this problem outliers are removed by retaining the 99% (beta99) and 95% 

(beta95) of data, respectively, within the confidence interval of each class.    

Finally, Figure 15 shows how changes across conditions in beta power compare 

with changes in Riemannian distance between covariance matrices. Covariance 

matrices reveal brain connectivity and their geometric properties can provide a better 

estimation of distance compared to standard Euclidean distance [82, 95]. 

Riemannian distance has been used also in brain computer interfaces as a robust way 

to classify different brain states [2]. Here we hypothesize that cognitive workload 

increases will be also associated with changes in brain connectivity. This is an 

argument supported also from previous work in cognitive workload that revealed 

significant connectivity changes both across condition as well as across expertise in 

surgeons [86]. Statistically significant differences were identified based on the 

Kruskal-Wallis one-way analysis of variance, which is a non-parametric method that 

account for the fact that some of the EEG data distributions are not normal even after 

the z-normalisation and outliers removal.    

 

1.7 Recommendations and Future Work 

Realistic virtual reality environments along with augmented reality paradigms 

provide unique opportunities towards novel artificial intelligence approaches that 

improve performance in teleoperations by leveraging human factors information 

obtained via multi-modal neurophysiological indices. Human in the loop systems are 

challenging to design and require multi-disciplinary approaches that couple our 

understanding in human brain neurophysiology with powerful computational 

approaches. Future applications should exploit the rich information derived from 

numerous neuroscientific and psychology studies to develop real-time adaptive 

systems. These systems should be able to account for the complexity in real-life 

scenarios via data-driven approaches and provide subject-specific support. 

Therefore, future systems should focus on:   

 

• The communication between key brain regions such as the prefrontal cortex and 

motor cortex is relatively unexplored. The function of the prefrontal cortex is 

key in decision making and as a high functional centre it is affected by anxiety 

and cognitive workload. Evidence shows that there are statistically significant 

differences in brain connectivity between conditions of time-pressure and self-

paced tasks as well as between novice and expert users. The development of 

advanced machine learning techniques that exploit this information in real-time 

and provide continuous measures of workload is of paramount importance. The 

Riemannian distance of the covariance matrix of the EEG signal has shown 

some promise in characterising cognitive workload differences. Further work is 

required to develop intuitive and interpretable continuous measures that can 
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detect subtle differences in brain connectivity and characterise cognitive 

workload conditions.       

• Cognitive workload estimation exploit advances in brain computer interfaces 

both in terms of miniaturised, portable sensing devices as well as intelligent 

algorithms. Current systems do not generalise well across subjects due to high 

inter-subject and inter-session variability and require training to be adjusted to 

each new user. Typically, BCIs require subject-specific training and calibration 

prior to use. Nevertheless, there are significant advances in machine learning 

that pave the way towards subject-independent BCIs. These technologies will 

play a significant role in transferring knowledge from highly specialised 

neuroimaging technologies to wearable headsets thus enabling reliable systems 

to be developed for safety critical applications.    

• It is also important to understand the differences in cognitive workload induced 

due to task specific difficulty and exogeneous factors such as time-pressure and 

time-latency. To this end several neurophysiological indices were explored as 

well as activity-depended measures that shed some light on the interaction level 

between the user and the system. Simulations environments can also provide 

opportunities to couple user’s actions with robotic motion in a task-independent 

way. These causal relationships give intuition behind performance and errors, 

which should be predicted and avoided in space applications.   

• Another important aspect of teleoperated systems with a human in the loop is 

semi-autonomous modes of operations. Semi-autonomy can enhance 

performance and reduce errors while it empowers users to be in control of the 

system. How these modes of operations can be defined in a principled way that 

it is independent of the task in hand and therefore their function generalise across 

robotic systems is an active area of robotics. Furthermore, how a system can go 

safely from one level of autonomy to another is of paramount importance in 

safety critical applications in space. In this scenario, transparency of the system 

achieved by intuitive, interactive designs and continuous measures of cognitive 

workload will play a critical role both during the cycles of system development 

as well as during the operation.   

• Computational complexity can be prohibitive in translating current artificial 

intelligence success stories to space applications. Therefore, it is important to 

develop emulation systems that mimic the hardware capabilities in space and 

allow researchers to test their solutions.   
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